پیش بینی رفتار تنش_کرنش مصالح شنی با استفاده از شبکه های عصبی مصنوعی
Authors
abstract
در این پژوهش رفتار مکانیکی مصالح درشت دانه شنی با استفاده از شبکه عصبی چند لایه پرسپترون، که از پرکاربردترین شبکه های عصبی مصنوعی در مسائل ژئوتکنیکی است، شبیه سازی شده است. ابتدا اطلاعات دقیقی از آزمون های منابع مختلف در سراسر کشور تهیه و عوامل مؤثر بر مقاومت برشی خاک های درشت دانه بررسی شده است. پس از حذف اطلاعات نادرست، روند یادگیری، آزمایش و پیش بینی شبکه طی شده است. در آموزش شبکه از الگوریتم یادگیری پس انتشار خطا استفاده شده است . پارامترهای استفاده شده در آموزش شبکه شامل خصوصیات دانه بندی، چگالی خشک، چگالی نسبی، درصد سایش لس آنجلس، فشار همه جانبه، کرنش و تنش انحرافی است. برای تعیین چگونگی و مقدار تأثیر ورودی ها بر خروجی مدل، تحلیل حساسیت روی آن ها انجام شده و نتایج به دست آمده با قوانین مکانیک خاک مقایسه شده است. بررسی مدل گویای این واقعیت است که شبکه ارائه شده، توانایی لازم برای پیش بینی رفتار تنش_کرنش خاک های درشت دانه را دارد.
similar resources
پیش بینی رفتار تغییر شکل داغ آلیاژ آلومینیوم 2030 با استفاده از شبکه عصبی مصنوعی
رفتار تغییر شکل داغ مواد بدلیل وابستگی آن به تغییرات کرنش، نرخ کرنش و دما دارای پیچیدگی های قابل ملاحظه ای است و لذا پیش بینی رفتار ماده در این شرایط مشکل می باشد. هدف از این بررسی پیش بینی رفتار تغییر شکل داغ آلیاژ آلومینیوم 2030 با استفاده از یک شبکه عصبی مصنوعی توسعه یافته مناسب می باشد. برای این منظور از آزمایشهای فشار داغ در محدوده دمایی بین 350 تا 500 درجه سلسیوس و در نرخ کرنشهای بین ...
full textمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
full textپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...
full textپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...
full textپیش بینی سطح مدیریت سود با استفاده از شبکه های عصبی مصنوعی...
اکثر تحقیقات انجام شده در حوزه مدیریت سود به بررسی انگیزه ها و عوامل موثر بر سطح مدیریت سود پرداخته اند، ولی از این متغیرها به طور مستقیم برای پیش بینی سطح مدیریت سود استفاده نشده است. در نتیجه تنها همبستگی بین مدیریت سود و این متغیرها بررسی شده است. از این رو، طراحی یک مدل برای پیش بینی سطح مدیریت سود به منظور کاهش ریسک بحران های مالی ناشی از مدیریت سود و کمک به سرمایه گذاران، اعتبار دهندگان و...
full textپیش بینی میزان غلظت آلاینده های هوای تهران با استفاده از شبکه عصبی مصنوعی
در این تحقیق شبکه عصبی مصنوعی جهت برآورد و پیش بینی غلظت گازهای آلاینده هوا به کار رفته است.با توجه به خطر آلودگی هوا در شهر تهران و ایجاد مشکلات زیست محیطی و بیماری های خطرناک تنفسی و پوستی به ویژه برای کودکان و سالمندان و نیاز شدید به کنترل آن ، این تحقیق در جهت برنامه ریزی و کنترل این مشکل در تهران و همچنین شهرهای بزرگ دیگر انجام گرفته است. برای این منظور از آمار غلظت گازهای آلاینده هوای ثبت...
full textMy Resources
Save resource for easier access later
Journal title:
مهندسی عمران مدرسPublisher: دانشگاه تربیت مدرس
ISSN
volume 11
issue 4 2012
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023